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Objects sharpen visual scene representations: evidence
from MEG decoding
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Real-world scenes consist of objects, defined by local information, and scene background, defined by global information. Although
objects and scenes are processed in separate pathways in visual cortex, their processing interacts. Specifically, previous studies have
shown that scene context makes blurry objects look sharper, an effect that can be observed as a sharpening of object representations in
visual cortex from around 300 ms after stimulus onset. Here, we use MEG to show that objects can also sharpen scene representations,
with the same temporal profile. Photographs of indoor (closed) and outdoor (open) scenes were blurred such that they were difficult
to categorize on their own but easily disambiguated by the inclusion of an object. Classifiers were trained to distinguish MEG response
patterns to intact indoor and outdoor scenes, presented in an independent run, and tested on degraded scenes in the main experiment.
Results revealed better decoding of scenes with objects than scenes alone and objects alone from 300 ms after stimulus onset. This
effect was strongest over left posterior sensors. These findings show that the influence of objects on scene representations occurs at

similar latencies as the influence of scenes on object representations, in line with a common predictive processing mechanism.
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Introduction

We need only a glance at a new place to determine whether it
is a field or a forest, a street or a playground (Potter 1976; Fei-
Fei et al. 2007), whereas, at the same time, we rapidly categorize
individual objects within that scene (Thorpe et al. 1996; Fei-Fei
et al. 2007). This is an example of how we naturally distinguish
between the recognition of scenes, informed by global informa-
tion, and of objects, informed by local information. In line with
this intuitive distinction, neuroimaging studies have provided
evidence for a neural distinction between the visual processing of
scenes and objects (Epstein 2014). Specifically, scenes and objects
activated distinct visual cortex regions in functional magnetic
resonance imaging (fMRI) studies, with objects preferentially acti-
vating the lateral occipital cortex (LO) and posterior fusiform
gyrus (pFs; Grill-Spector and Malach 2004) and scenes preferen-
tially activating the parahippocampal place area (PPA; Epstein and
Kanwisher 1998), the retrosplenial complex (RSC; Maguire et al.
2001), and the occipital place area (OPA) near the transverse occip-
ital sulcus (TOS; Grill-Spector 2003). Transcranial magnetic stim-
ulation (TMS) studies have provided causal evidence to support
these findings, showing that stimulation of the scene-selective
OPA selectively impaired scene recognition while stimulation of
the object-selective LO selectively impaired object recognition
(Mullin and Steeves 2011; Dilks et al. 2013; Ganaden et al. 2013;
Wischnewski and Peelen 2021a).

In addition to evidence for the separate processing of scenes
and objects, there is also mounting evidence that their process-
ing interacts. A large behavioral literature has focused on the
effects of scene context on object recognition, showing that object

recognition is more accurate when objects appear in a congruent
as compared with an incongruent context (Biederman et al. 1982;
Bar 2004; Davenport and Potter 2004; Oliva and Torralba 2007;
Munneke et al. 2013; V6 et al. 2019). Although it was initially
unclear to what extent these effects occurred at the perceptual
and/or decisional level (Henderson and Hollingworth 1999), recent
studies have provided evidence that scene context can, in some
cases, perceptually sharpen the representation of objects (Rossel
etal. 2022,2023). At the neural level, fMRI studies have shown that
scene context modulates the representation of objects in visual
cortex. Specifically, the representations of ambiguous (degraded)
objects in object-selective LO and pFs became more similar to
the representations of the corresponding intact objects when
the ambiguous objects were presented in their original scene
context (Brandman and Peelen 2017). A magnetoencephalography
(MEG) study further showed that this scene-based sharpening of
object representations occurred at around 300 ms after stimulus
onset (Brandman and Peelen 2017). Finally, it was shown that LO
activity at this time causally contributed to scene-based object
recognition, such that TMS over LO at 260-300 ms after stimulus
onset selectively impaired scene-based object recognition, but not
isolated-object recognition (Wischnewski and Peelen 2021b).

One interpretation of these findings is that rapidly processed
scene “gist”, based on coarse (low spatial frequency) informa-
tion, activates a scene schema that then facilitates object pro-
cessing (Schyns and Oliva 1994; Bar 2004; Oliva and Torralba
2007). This interpretation implies that scene-object interactions
are unidirectional, with scene context informing object processing
but not necessarily vice versa. Interestingly, however, there is
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now also evidence for the reverse influence, with objects facil-
itating scene processing. For example, behavioral studies have
found that scene recognition was more accurate for scenes shown
together with a semantically congruent (vs incongruent) object
(Davenport and Potter 2004; Davenport 2007; Leroy et al. 2020)
and, like scene-to-object influences, such object-to-scene congru-
ency effects were also found for briefly presented and masked
images of scenes (Joubert et al. 2007; Furtak et al. 2022). Finally,
objects have also been shown to modulate scene representations
in scene-selective regions of visual cortex. Specifically, the rep-
resentations of ambiguous (degraded) scenes in left OPA and left
PPA became more similar to representations of the correspond-
ing intact scenes when the ambiguous scenes were presented
together with a congruent object (Brandman and Peelen 2019). To
our knowledge, the time course of this object-based sharpening
of scene representations has not been investigated. Revealing this
time course would allow for comparing the time courses of scene-
to-object and object-to-scene influences.

To fill this gap, here we used MEG to investigate when the rep-
resentation of scenes is modulated by object presence. The design
and analysis approach closely followed that of our previous fMRI
study (Brandman and Peelen 2019). Specifically, we measured
the multivariate representations of scene category evoked by
degraded scenes with objects, degraded scenes alone, and objects
alone. In a separate intact-scenes experiment used for classifier
training, participants viewed indoor (closed) and outdoor (open)
intact scene images, presented without the foreground object. We
used cross-decoding classification of scene category (indoor/out-
door) to compare the multivariate response patterns evoked by
intact scenes to those evoked by the main experiment stimuli.
This allowed us to measure the contribution of the object to
the neural representation of scene category in degraded scenes,
in order to characterize the temporal dynamics of object-based
facilitation of visual scene processing.

Based on our previous study, showing that object repre-
sentations are disambiguated by scene context from around
300 ms after stimulus onset (Brandman and Peelen 2017), we
hypothesized that scene representations would similarly be
disambiguated by objects at 300 ms after stimulus onset.

Materials and methods

Participants

Twenty-eight healthy participants (13 male, mean 26 years + 4 SD)
took part in the study. All participants had normal or corrected
to normal vision and gave informed consent. Sample size was
chosen to match that of our previous studies using similar MEG
decoding methods (Brandman and Peelen 2017; Brandman et al.
2020). No subjects were excluded. All procedures were approved
by the ethics committee of the University of Trento.

Stimuli

The stimulus set was the same as the set used in the corre-
sponding fMRI study (Brandman and Peelen 2019), consisting of
degraded scenes that were perceived as ambiguous on their own
but that were easily categorized when presented with an object
(Fig. 1A). Scenes were degraded in Adobe Photoshop by applying
radial blur and reducing image contrast. Both indoor and outdoor
scenes included a mixture of animate and inanimate objects of
various categories, and did not contain other objects contextually
associated with the foreground objects. The main experiment
stimuli consisted of 30 indoor and 30 outdoor scene photographs
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with one dominant foreground object, presented in 3 conditions
(total 180 images): scene with object, scene alone, or object alone
on a uniform gray background of mean luminance of the original
background (see examples in Fig. 1(A); for the full stimulus
set, see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033316/
bin/NIHMS76424-supplement-Supplementary_Figure.pdf, and
for details on stimulus generation, see Brandman and Peelen
2019). To avoid familiarity effects passing from scenes with
objects to scenes alone, the stimulus set was split in two, such
that different scenes were presented for degraded scenes with
objects and for degraded scenes alone within a given subject,
counterbalanced across subjects (Brandman and Peelen 2019).
The pattern localizer included the 60 scenes from the main
experiment (with different cropping), and an additional set of
60 new scenes that were matched for category and sub-category
of the main experiment set, in high resolution. Importantly, the
intact scenes never included the foreground object. All stimuli
were presented centrally, at a visual angle of 6 x 6° (400 x 400
pixels).

Procedure

On each trial, participants viewed a 500-ms fixation screen fol-
lowed by the stimulus briefly presented for 83 ms, and a jittered
inter-trial-interval (ITI) between 1,200 and 1,600 ms (mean ITI
1,400 ms). Throughout all runs participants performed a one-
back task in which they pressed a button each time an image
appeared twice in a row. Performance on this task was highly
accurate (mean accuracy = 97%, SD = 5%). Every 33 trials they
were presented with their response accuracy for 5 s, and once
in the middle of the run, they received an additional 8-s fixation
break. The main experiment consisted of four runs of an ~426-
s duration, including 18 one-back target trials and 30 trials per
condition: indoor/outdoor x scene/object/scene-with-object (198
trials/run). The intact scene experiment consisted of four runs
of an ~285-s duration, including 12 one-back trials and 30 trials
per condition: indoor/outdoor x old/new (132 trials/run). This
resulted in 120 trials per condition in the main experiment, and
120 trials per condition in the intact scene experiment. Trials were
randomly intermixed within each run.

Data acquisition and preprocessing

Electromagnetic brain activity was recorded using an Elekta Neu-
romag 306 MEG system, composed of 204 planar gradiometers and
102 magnetometers. Signals were sampled continuously at 1,000
Hz and band-pass filtered online between 0.1 and 330Hz. Offline
preprocessing was done using the Elekta MaxFilter/MaxMove soft-
ware, MATLAB (RRID:SCR_001622) and the FieldTrip analysis pack-
age (RRID:SCR_004849). Spatiotemporal signal space separation
(tSSS) was performed to reduce noise originating from external
(non-brain) signals, as well as noise produced by head motion, by
exploiting certain properties of the solution to the Maxwell equa-
tions (Taulu and Simola 2006), as implemented by the Elekta Max-
Filter/MaxMove software. Data were then demeaned, detrended,
down-sampled to 100 Hz and time-locked to visual onset. The
data were averaged across trials of the same exemplar across runs
(excluding one-back trials, which were discarded), resulting in a
total of 90 unique test trials throughout the main experiment
(15 per condition), and 120 unique train/test trials throughout
the intact scenes experiment (30 per condition). Except for the
one-back trials, no trials were excluded and no additional artifact
removal methods were used.
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Fig. 1. Experimental approach. (A) Sample stimuli used in the main experiment across six conditions: Indoor/outdoor x degraded scenes, degraded
scenes with objects, objects on uniform gray background of mean luminance of the original background. (B) Cross-decoding of scene category: we
trained a linear classifier on the multivariate response pattern across MEG sensors to indoor and outdoor intact scene photographs, and tested classifier
predictions of scene category based on the response patterns for each of the main experiment conditions.

Multivariate analysis

Multivariate analysis was performed using the CoSMoMVPA
toolbox (Oosterhof et al. 2016) (RRID:SCR_014519). Analysis
followed a similar procedure as in our fMRI study using the
same approach (Brandman and Peelen 2019), in which a cross-
decoding algorithm was trained on scene-category classification

of intact scenes (without foreground objects) and tested on
degraded scenes, degraded scenes with objects, and objects
alone. Decoding was performed across the 24 left-hemisphere
posterior magnetometers of each participant between 0 and 500
ms. We focused on left posterior channels based on our previous
fMRI findings of a left-lateralized effect in scene-selective visual



areas using the same decoding approach (Brandman and Peelen
2019). Magnetometers were used as these gave the most reliable
classification in previous work using similar decoding methods
(Kaiser et al. 2016; Brandman et al. 2020). Prior to decoding,
temporal smoothing was applied by averaging across neighboring
time-points at a distance of 2 (20 ms) on each side. An LDA
classifier discriminated between response patterns to indoor vs.
outdoor scenes. The covariance matrix was regularized by adding
the identity matrix scaled by 0.01 of the mean of the diagonal
(as implemented in CoSMoMVPA). The decoding approach is
illustrated in Fig. 1(B). First, decoding of intact scene category was
measured within the pattern localizer, by training on old-scene
trials (i.e. scenes included in the main-experiment set, without the
foreground object; 60 samples), and testing on new-scene trials
(60 samples). Next, cross-decoding was achieved by training on
all conditions of the pattern localizer (120 samples), and testing
on each of the main-experiment conditions (scene, scene-with-
object, object; 30 samples each). Decoding was performed for
every possible combination of training and testing time-points
between 0 and 500 ms, resulting in a 50 x 50 matrix of 10-ms
time-points, for each of the tested conditions, per subject. In
addition, to generate a measure of same-time cross-decoding,
decoding accuracy of each time-point along the diagonal of the
matrix was averaged with its neighboring time-points at a radius
of 2 (20 ms in every direction).

Significance testing

Classification significance against chance (accuracy of 0.5)
was tested on decoding accuracies across the time-by-time
matrix. Significance was tested for each time-point by computing
random-effect temporal-cluster statistics corrected for multiple
comparisons, as implemented in CoSMoMVPA. This was accom-
plished via t-test computation over 1,000 permutation iterations,
in which the sign of samples was randomly flipped (over all
features) after subtracting the mean, and using threshold free
cluster enhancement (TFCE) as cluster statistic, with a threshold
step of 0.1. Significance was determined by testing the actual
TFCE image against the maximum TFCE scores yielded by the
permutation distribution (TFCE, P < 0.05) (Smith and Nichols
2009). Significant above-chance decoding of scene category in
the intact-scenes experiment was tested across the entire time-
by-time matrix. Significant time-points were then used to define
a temporal mask for cross-decoding significance testing (Fig. 2).
Paired differences between main experiment conditions were
tested along the same-time (i.e. of training and testing) cross-
decoding accuracies, similarly using TFCE and the temporal mask.

Searchlight analysis

The same cross-decoding method described above was applied
in a searchlight approach (Kriegeskorte et al. 2006; Kaiser et al.
2016), across the entire scalp of each participant, as implemented
in CoOSMoMVPA. Searchlight was performed using all magnetome-
ters (similar clusters were observed when using both magne-
tometers and gradiometers). For each timepoint, the searchlight
analysis was performed separately for scenes with objects and
scenes alone, across neighborhoods of 15 channels (Kaiser et al.
2016), resulting in an accuracy score for each channel, condition,
and timepoint. Thereafter, decoding accuracies were averaged
into time-clusters of 50 ms each, resulting in 10 decoding maps
between 0 and 500 ms for each condition. Within each time-
cluster, significant object-based scene facilitation was tested by
the difference between scenes with objects and scene alone, using
the same permutation and TFCE procedures as described above,
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Fig. 2. Decoding of scene category from activity evoked by intact images.
Decoding accuracies from a classifier trained to distinguish indoor vs out-
door intact scenes (Fig. 1B) across two stimulus sets. Matrices represent
the decoding accuracy across a time x time space from stimulus onset to
500 ms, averaged across participants. Black outlines denote clusters for
which decoding was significantly above chance (classifier accuracy 0.5)
at TFCE, P < 0.05.

applied to the spatial distribution of decoding accuracies across
channels.

Results

We tested above-chance classification of superordinate scene
category using a cross-decoding approach (Fig. 1B). In the main
analyses, classifiers were trained to discriminate indoor versus
outdoor intact scenes (without foreground objects), and then
tested on scene category discrimination of degraded scenes with
objects, degraded scenes alone, and objects alone on a uniform
gray background. In our previous fMRI study using the same
stimuli and analysis approach, we found a strongly lateralized
effect in scene-selective areas, with object-based scene facilita-
tion restricted to the left hemisphere (Brandman and Peelen 2019).
Therefore, our analyses focused on left hemisphere sensors. In
addition, to examine the spatial distribution of scene decoding
across the entire scalp, we ran a searchlight analysis through all
MEG sensors.

Decoding scene category from intact scenes

In a first analysis, we decoded scene category (indoor/outdoor)
from intact scenes. The significant cluster in the time x time
decoding matrix spanned most of the diagonal, peaking at around
200 ms after stimulus onset (Fig. 2). These results show that MEG
response patterns to indoor and outdoor scenes reliably differed
at multiple stages of visual processing.

Decoding scene category from degraded scenes

In the main analyses, classifiers were trained on intact scenes
(without foreground objects) and tested on degraded scenes alone,
degraded scenes with objects, and objects alone. Cross-decoding
accuracies are presented in Fig. 3. Scene category could be reliably
decoded from degraded scenes alone between ~200 and 300 ms
(Fig. 3A), and from degraded scenes with objects between ~250
and 400 ms (Fig. 3B). In contrast, scene category could not be
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Fig. 3. Cross-decoding of the scene category. Decoding accuracies from a classifier trained to distinguish indoor vs outdoor intact scenes (Fig. 1B) and
tested on (A) degraded scenes, (B) degraded scenes with objects, and (C) objects alone. Matrices represent the decoding accuracy across a time x time
space from stimulus onset to 500 ms, averaged across participants. Black outlines denote clusters for which decoding was significantly above chance
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Fig. 4. Object-based scene facilitation. Cross-decoding accuracies along
the time diagonal (matched training and testing times) of the matrices
presented in Fig. 3. Data are represented as mean + SEM across subjects.
Black-filled rectangles denote significant differences between conditions
at TFCE, P < 0.05.

decoded from objects alone at any time point (Fig. 3C). These
results show that superordinate scene category could be extracted
from degraded scenes, particularly when an object was present.
Importantly, the object alone could not explain this decoding.

Object-based scene facilitation

To measure object-based scene facilitation, we compared the
cross-decoding accuracies of degraded scenes with and without
objects (and objects alone), along similar training and testing
times from stimulus onset (Fig. 4). Significant object-based scene
facilitation was found around 320 ms after stimulus onset. Specif-
ically, decoding accuracies were significantly higher for degraded
scenes with objects than for degraded scenes alone between 310
and 330 ms, and were also higher for degraded scenes with objects
than for objects alone between 320 and 350 ms. These results
provide evidence that objects facilitated scene processing.

The spatial distribution of object-based scene
facilitation

In the final analysis, we measured cross-decoding accuracies
for degraded scenes with and without objects across the entire
scalp in a searchlight procedure (similar results were obtained for

the less controlled comparison of degraded scenes with objects
versus objects alone). Searchlight results are presented in Fig. 5.
Significant object-based scene facilitation was found between 300
and 350 ms, mostly in left posterior sensors (Fig. 5A). In these
sensors, the average neighborhood decoding accuracy was higher
for degraded scenes with objects than for degraded scenes alone.
Scene category could be decoded from both degraded scenes
(Fig. 5B) and degraded scenes with objects (Fig. 5C) from around
200 ms. These results show that object-based facilitation fol-
lowed the initial representation of scene category extracted from
degraded scenes.

Discussion

The current results provide evidence that objects sharpen the
representation of ambiguous scenes from 300 ms after stimulus
onset. At this time point, the multivariate response patterns
evoked by the degraded (ambiguous) scene, when presented with
an object, became more similar to the multivariate response
patterns evoked by the corresponding scene when presented
intact and fully visible. Importantly, the intact scenes used
for classifier training did not contain the foreground objects
that disambiguated the degraded scenes. As such, the visual
processing of the foreground objects themselves could not
account for the increased decoding; if anything, the intact scenes
used for training the classifier were visually more similar to
the degraded scenes without objects than the degraded scenes
with objects. Indeed, in our previous fMRI study, using the same
stimuli and analysis approach, decoding in early visual cortex
was higher for the degraded scenes without objects than for
the degraded scenes with objects. Therefore, we interpret the
increased decoding for degraded scenes with objects as reflecting
a sharpening of the representation of the background scene.
In our previous fMRI study, we observed a sharpening of scene
representations in the left OPA and left PPA (Brandman and Peelen
2019). This accords well with the current whole-brain searchlight
results, which showed that the strongest object-based facilitation
in decoding was observed over left posterior sensors (Fig. 5A).
Combining the results of both studies supports the conclusion
that objects sharpen representations in left scene-selective visual
cortex from 300 ms after stimulus onset.

What scene properties are disambiguated by objects? Classi-
fiers were trained on distinguishing indoor versus outdoor scenes,
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Fig. 5. Searchlight of object-based scene facilitation. (A) Difference in cross-decoding accuracies for degraded scenes with objects versus degraded
scenes alone. Black outlines denote significant object-based scene facilitation, measured by the difference between degraded scenes with and without
objects, TFCE P < 0.05. (B) Decoding accuracy for degraded scenes alone and (C) degraded scenes with objects. Black outlines denote significant above-
chance decoding, TFCE P < 0.05. Decoding results were averaged across neighborhoods of 15 sensors in a searchlight procedure, averaged across 50-ms

time-clusters, and averaged across participants.

categories that differ at multiple levels, from low-level features
to their semantic category and the actions they afford (Greene
and Hansen 2020). Indeed, classifiers that were trained and tested
on (different exemplars of) intact scenes showed above-chance
decoding across a broad time window (50-450 ms after stimulus
onset). Decoding along this time window likely reflects differ-
ent stages of scene processing, as also suggested by the limited
generalization across time (Fig. 2; King and Dehaene 2014). The
presence of objects could potentially lead to a sharpening of all
these levels of representation through feedback within the scene
pathway (Peelen et al. 2023). Notably, the strongest decoding of
ambiguous scenes with objects was observed along the diagonal
of the time x time matrix from 250 ms after scene onset (Fig. 3),
suggesting that relatively late-stage representations evoked by the
intact scenes were disambiguated by the objects. One possibil-
ity is that the object (e.g. an airplane) helped to recognize the
ambiguous scene at the basic level (e.g. sky), which then led to
activation of superordinate category (indoor vs outdoor) prop-
erties. These properties include spatial layout (open vs closed),
which is represented around 250 ms after stimulus onset (Cichy
et al. 2017) and is also represented in OPA and PPA (Kravitz
et al. 2011; Park et al. 2011). Accordingly, our findings may reflect
the disambiguation of the spatial layout of the scene. However,
future studies are needed to systematically manipulate clear
and ambiguous scene properties to test this more conclusively.
For example, it would be interesting to test whether and when
disambiguation is observed at the basic level (e.g. distinguishing
between two outdoor scene categories). Relatedly, studies could

investigate whether the timing of the facilitation depends on the
task relevance of the categorization, e.g. whether objects facilitate
scene representations more quickly when the decoded dimension
is relevant for the task.

The current study complements our previous MEG study inves-
tigating the reverse effect: the sharpening of object represen-
tations by scene context (Brandman and Peelen 2017). In that
study, we found that the decoding of object category (animate
vs inanimate) increased for ambiguous objects presented within
their original scene context, both when compared with the same
objects outside of scene context and when compared with the
scene context alone. Almost identical to the current results, this
increase was observed from 320 to 340 ms after stimulus onset.
Together, these studies show that the interaction between scene
and object processing is bidirectional, without a clear temporal
asymmetry. This is in line with behavioral studies showing bidi-
rectional interactions between objects and scenes in recognition
and categorization tasks (Davenport and Potter 2004; Davenport
2007; Joubert et al. 2007; Leroy et al. 2020; Furtak et al. 2022).
Furthermore, studies using free-report paradigms have shown
that participants are equally likely to report scene and object
features for scenes presented very briefly. Rather than demon-
strating a categorical advantage (e.g. scenes before objects), par-
ticipants report lower-level features of both scenes and objects
for short presentation times and increasingly higher-level fea-
tures (e.g. semantic categories) of both scenes and objects for
longer presentation times (Fei-Fei et al. 2007; Chuyin et al. 2022).
Nevertheless, although interactions between objects and scenes
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are bidirectional and do not appear to show a clear temporal
asymmetry, in daily life, it is likely that scenes exert a stronger
influence on object processing than vice versa, considering that
scene information is usually less ambiguous and more stable over
time than object information.

Our findings can be explained within a general predictive
processing framework, in which recurrent feedforward/feedback
loops in the cortex serve to integrate top-down contextual priors
and bottom-up observations so as to implement concurrent prob-
abilistic inference along the visual hierarchy (Lee and Mumford
2003). Our results support this interpretation by showing that
scene category is initially represented for degraded scenes with
and without objects, with objects subsequently boosting scene
category information (Fig.5). Contextual matching of bottom-
up input and top-down expectations has also been proposed to
account for object-based scene processing (Bar and Ullman 1996;
Bar and Aminoff 2003; Bar 2004; Mudrik et al. 2014). Interestingly,
scenes and objects are initially processed in separate pathways
that are not hierarchically related to each other. This raises the
question of how information from one pathway reaches the other
pathway. One possibility is that object and scene pathways inter-
act at higher (e.g. categorical) stages, with information then feed-
ing back within each pathway, leading to perceptual sharpening
(Peelen et al. 2023). For example, recognizing a scene as a road
could lead to the disambiguation of a car-sized blob as a car, which
would then lead to the disambiguation of specific car features (e.g.
the taillight).

If interaction takes the form of a representational sharpening
loop, converging with the accumulation of sufficient evidence, we
may ask how unambiguous stimuli are processed. Many objects
and scenes we see in everyday contexts already provide suf-
ficient feed-forward information to identify them without the
need for contextual integration. Current data suggest that contex-
tual sharpening occurs on a need-to-know basis, i.e. when feed-
forward intrinsic information is insufficient, informing multiple
plausible representations, extrinsic information is gathered via
contextual processing until a unique representation emerges. In
line with this notion, behavioral data revealed that the facilitating
effect of the scene on object detection was reduced for intact
objects, and that object ambiguity was correlated with the effec-
tiveness of contextual facilitation (Brandman and Peelen 2017).
Other studies have shown that scene-based expectations bene-
fit the processing of scene-congruent objects when the objects
are ambiguous, but benefit the processing of scene-incongruent
objects when there is no ambiguity (Spaak et al. 2022; Rossel et al.
2023). Finally, an electrophysiology (EEG) study showed that ERP
differences in response to congruent and neutral contexts were
larger for ambiguous than for unambiguous objects (Dyck and
Brodeur 2015). Although these studies investigated the influence
of scene context on object processing, we expect that similar
principles apply to the reverse influence, from objects to scenes.
It would be interesting to adopt recently developed behavioral
paradigms showing perceptual sharpening of object representa-
tions (Rossel et al. 2022) to investigate object-based sharpening
of scene representations, also as a function of ambiguity (Rossel
et al. 2023).

Finally, animportant open question is whether the disambigua-
tion we observe is necessary for scene understanding or whether
it is epiphenomenal. We have previously used TMS to show that
the scene-based sharpening of object representations at 300 ms
after stimulus onset is causally involved in object recognition
(Wischnewski and Peelen 2021b). With the information about the
timing of the reverse effect, obtained in the current study, a similar

TMS study can now be performed, testing whether object-based
sharpening of scene representations at 300 ms after stimulus
onset is causally involved in scene recognition.

Conclusion

Our findings support interactive accounts of object and scene
processing, whereby the two pathways generate complementary
local and global representations of scenes, and dynamically share
information across pathways in order to construct the full percept
of a scene. The present study shows that the influence of objects
on scene representations occurs at similar latencies as the influ-
ence of scenes on object representations (Brandman and Peelen
2017), in line with a common predictive processing mechanism.
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